Ticker

6/recent/ticker-posts

Find the Unknown in Piecewise Function | Calculus

Question:

For what value of \(k\),\[ f(x) =\left\{ \begin{array}{ll} 4x^2-kx-10 & 0 \leq x< 2\\ 1-6x & 2\leq x \leq 3\\ \end{array} \right.\] \(\text{is continuous} \quad \forall x\in [0,3]\).

Answer:

If the function is continuous, the limit at the break points must evaluate to the same value. Therefore, the following condition must be met, $$\lim_{x \to 2^-} 4x^2-kx-10=\lim_{x \to 2^+}1-6x$$ $$\Rightarrow 4(2)^2-k(2)-10=1-6(2)$$ $$\Rightarrow 6-2k=-11$$ $$\Rightarrow 17=2k$$ $$\Rightarrow k=\frac{17}{2}$$ Secondly, since the piecewise function consists of polynomials, we know that the polynomials are continuous for their respective domains. Hence, the value of k must be \(k=\frac{17}{2}\) if the function \(\text{is continuous} \quad \forall x\in [0,3]\).

Post a Comment

0 Comments