Ticker

6/recent/ticker-posts

Logarithmic Derivative Exercise Question | Calculus

If 5x+5y=5x+y then prove that dydx+5yx=0.

Differentiating with respect to x, we get

5xln(5)+5yln(5)dydx=5x+yln(5)(1+dydx)
5x+5ydydx=5x+y(1+dydx)
5x+5ydydx=5x+y+5x+ydydx
dydx(5x+y5y)+(5x+y5x)=0
dydx+5x+y5x5x+y5y=0
dydx+5y5x=0 dydx+5yx=0

Post a Comment

0 Comments