Ticker

6/recent/ticker-posts

Continuity of Piecewise Function | Calculus

Question:

Consider \[f(x)=\left\{\begin{array}{ll} \frac{x^{2}-x-6}{x+2} & x \neq-2 \\ -5 & x=-2 \end{array}\right.\] Check whether the function \(f(x)\) is continuous at \(x= -2\).

Answer:

$$f(-2)=5$$ $$\lim_{x \to -2}f(x)=\lim_{x \to-2}\frac{x^2-x-6}{x+2}$$ $$=\lim_{x \to -2}f(x)=\lim_{x \to-2}\frac{(x-3)(x+2)}{x+2}$$ $$=\lim_{x \to -2}(x-3)=f(-2)=-5$$ Hence \(f(x)\) is continuous at \(x=-2\)

Post a Comment

0 Comments