Question:
Find Row Reduced Echelon Form of the given matrix using row operations in MATLAB?
\(\begin{pmatrix} 1 & 2 & 4 & -2 & 3\\ 2 & -1 & 2 & 1 & 1\\ 3 & 1 & 6 & -1 & 4\\ 1 & -3 & -2 & 3 & -2 \end{pmatrix}\)Answer:
Row Reduced Echelon Form can be obtained by doing row operations withour using "rref" built-in command of MATLAB
A = [1 2 4 -2 3;2 -1 2 1 1;3 1 6 -1 4;1 -3 -2 3 -2]; A(2,:) = A(2,:) - 2*A(1,:); A(3,:) = A(3,:) - 3*A(1,:); A(4,:) = A(4,:) - A(1,:); A(2,:) = A(2,:)*(-1/5); A(3,:) = A(3,:) + 5*A(2,:); A(4,:) = A(4,:) + 5*A(2,:); A(1,:) = A(1,:) - 2*A(2,:); A
OUTPUT
A = 1.0000 0 1.6000 0 1.0000 0 1.0000 1.2000 -1.0000 1.0000 0 0 0.0000 0 0 0 0 0.0000 0 0
0 Comments